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Abstract

In this paper, an analytical solution in series form for the problem of double circular piezoelectric inclusions em-
bedded in an infinite piezoelectric matrix is presented within the framework of linear theory of piezoelectricity. The
matrix is subjected to remote electro-mechanical loading, and the three phase system is also subjected to the action of
arbitrary singularities. The solution is obtained by applying complex potential approach in conjunction with the
techniques of conformal mapping, analytical continuation, singularity analysis, Laurent’s series expansion in an an-
nular ring region and Cauchy integral formulae, etc. Based on the obtained complex potentials, explicit expressions for
the stress and electric displacement in the matrix and the two circular inclusions are also derived. A numerical in-
vestigation for the case of remote loading is performed to illustrate the influence of a third phase on the system’s
electroelastic coupling behavior and also to verify the correctness and usefulness of the solution. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Due to their well-known intrinsic electro-mechanical coupling phenomenon, piezoelectric materials are
widely used in technology, such as high power sonar transducers, electro-mechanical actuators, and pi-
ezoelectric power supplies. These devices are designed to work under electro-mechanical loading condi-
tions. The existence of macro as well as micro flaws and defects, such as dislocations, cracks and inclusions,
etc. will seriously affect the lifetime of these devices.

Considerable research has been carried out on the behavior of piezoelectric materials in the presence of
dislocations, cracks and inclusions. Deeg (1980) examined the effect of a single dislocation, a single crack
and a single inclusion on the coupled response of piezoelectric materials. Pak (1990) derived closed-form
solution for a screw dislocation in an infinite piezoelectric solid, and showed the effect of a dislocation on
the coupling behavior. Meguid and Deng (1998) obtained the solution for the interaction problem of a
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dislocation outside an elliptical piezoelectric inhomogeneity in an infinite piezoelectric matrix. Deng and
Meguid (1999) provided a general treatment to the electro-elastic interaction problem of a screw dislocation
inside an elliptical piezoelectric inhomogeneity in an infinite piezoelectric matrix. All of the aforementioned
work only considered a single inclusion in an infinite matrix. In reality, when there exist many inhomo-
geneities in a piezoelectric matrix and when the interaction effect among the closely spaced inhomogeneities
cannot be ignored, study on multi-inclusion problem becomes a crucial and also very interesting research
topic.

The problem of double circular piezoelectric inclusions embedded in an infinite piezoelectric matrix is
considered in this paper. The matrix is subjected to remote inplane electric field as well as out of plane
shear; the matrix and the two inclusions are also subjected to the action of singularities which can include a
screw dislocation, electric potential discontinuity, a point force and a point charge. In this study, the
complex potential approach combined with the techniques of conformal mapping, analytical continuation,
singularity analysis, Laurent’s expansion in an annular ring region and Cauchy integral formulae, etc. is
utilized to obtain an analytical solution in series form for the two inclusion problem. It can be easily
observed from the obtained solution that the existence of a third phase significantly altered the mechanical
and electrical fields when there is only one inclusion in the matrix. One apparent example is that under
remote electro-mechanical loading, the stress and electric displacement within the two inclusions are no
longer uniform as in the case of a single inclusion.

2. Problem statement and basic formulation

Now, consider two circular piezoelectric inclusions whose radii are 1 and (x; — x)/2, respectively em-
bedded in an infinite piezoelectric matrix. The two inclusions and the matrix have different elastic and
electric properties and are assumed to be transversely isotropic with respect to the longitudinal direction.
The matrix is subjected to remote in-plane electric field as well as out-of-plane shear; the matrix and the two
inclusions are also subjected to the action of singularities which can be a screw dislocation, an electric
potential discontinuity, a point force and a point charge. The two inhomogeneities are assumed to be
perfectly bonded with the matrix along the two interfaces and there are no concentrated forces and free
charges lying along the two interfaces. The region occupied by the matrix is denoted as region D,, while the
region occupied by the left inclusion is denoted as region D; and the region occupied by the right inclusion
is denoted as region D;. The subscripts for complex potentials also use the corresponding notations.

The governing field equations
Oy + 0, =0, D.x+D,, =0. (1)

The constitutive equations
Oy Ca €15 Wy Wy
= =T 2
)=l St -rle) 2
Oz Cis €35 Wy Wi
= Te=I< 2b
{Dx} |:915 —811]{¢,x} {(f’ﬁx}’ (2b)

where in Eqgs. (1), (2a) and (2b), 0., 7., are the shear stress components, D, and D, are the electric dis-
placement components, w is the out-of-plane displacement, ¢ is the electric potential, the constitutive

constants cyy, €15, &1 are, respectively, the longitudinal shear modulus, piezoelectric modulus and dielectric
modulus. Substitution of Egs. (2a) and (2b) into Eq. (1) yields
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Viw |
H{Tr) oo 5
The general solution to Eq. (3) is
U= {g} = Imf(z), 4)

where in the above equation, f(z) is a two-dimensional analytical complex function vector of a complex
variable z = x + iy.
The mechanical strain and electric field strength can be obtained from Eq. (4) as follows:

’yzy + iyzx __ g
{—Ey—iEx}_f(z)' (5)
On substituting Eq. (4) into Egs. (2a) and (2b), we can obtain
Oz /
{Dy } =TI'Ref'(2), (6a)
%2 L — I'Imf(z) (6b)
Dx = zZ).

From Egs. (6a) and (6b), we can get
oy +ioy |
{Dy +iD. } =TI1'(z). (7)

Introduce a potential function vector @ which satisfies the following relationships:

(5)e (5]

From Egs. (6a) and (6b), we can get

® =TI'Ref(z). 9)
From Egs. (4) and (9), the boundary conditions of mechanical and electric fields are
U = Imf(z)
(10)
® =TI'Ref(z).
Now, introduce the following form of fractional linear mapping function (Zhuang and Zhang, 1984):
{—a
=== 11
Ta-r (11)
wherea:1+x1x2+ (2 —1)(x% - 7 R:xlxz—l— (x%—l)(x%—l).
X1 +x Xy — X2

The above mapping function is conformal in the whole plane including infinity, and it can map the two
circular inclusions whose radii are 1 and (x; — x,)/2 in the z-plane onto |{| > 1 and |{| < R in the {-plane
while the matrix region in the z-plane is mapped onto an annular ring R < |{| < 1 in the {-plane, infinity in
the z-plane is mapped to { = 1/a in the {-plane as shown in Fig. 1.
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Fig. 1. A schematic representation of the conformal mapping adopted.

With the mapping function (11), Eq. (10) can be rewritten in the {-plane as follows:

U = Imf({)
® =T Ref(().
In the z-plane, the singular behavior of f,(z), f,(z), f3(z) including infinity is

b, — ' 'fi
fi,(z) = 1277;11 In(z — z),
b, — I';'f,i b, — I;'f,i b; — I';'fsi
f(2) = nH% In(z — 25) +% In(z - 2,) +¥ In(z — z3),
by — I'7'f;i
f1,(z) = 327;31 In(z — z3),

(15)

where in the above equation, the real quantity vector b represents a screw dislocation and electric potential
discontinuity, while the real quantity vector f represents a point force and a point charge. IT is determined

by the remote loading conditions, which have the following four possible combinations:

Case I: remote mechanical strains 3, 75 and remote electric field strength £7°, E°
N R S o
“{—Egc—iE;;o}-
o0

Case 2: remote mechanical stresses ¢

zx

2 2 00 1 00
Il = 1 [811 €ls } { 0, +10; }
= 2| ,2 2 o 4 ipe (-
ety + (efs)” L ~Ca Dy +ib;
Case 3: remote mechanical strains 77, y3; and remote electric displacement D}°, D)

H:L-gil 0{/i;+1yz°£0}
e lers —1] 1D +1D¢

o;, and remote electric displacement D;*, D*

Cuase 4: remote mechanical stresses ¢>°

zx

o2, and remote electric field strength E7°, E°

n--[o SRR}
iy [0 oy || BT —IED

(16a)

(16b)

(16¢c)

(16d)
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Then, in the {-plane, f,({), f2({), f3({) will possess the following singularities in their respective definition
regions:

—
() =2 ¢ - ), (1)

K Bz—rglfzil (-, 751—Fz‘lflilnC—l/ailAu—l";lﬁi

LO=r " 2 "iTija Z 2n

In({ —1/a), (18)

b, -I'i (—(
f3,(0) = 3 1 19
3 (C) 2TC n C ’ ( )
where in Eq. (18), K = (1/a*> — 1)IL

The complex potentials defined in the two inclusions and the matrix must satisfy their respective sin-
gularity conditions (17)—(19) and the continuity conditions across the two interfaces |f| = R and |¢| = 1. The
continuity conditions can be specifically expressed as follows:

U =U,, ® =D, (|t|=R), (20)

U, = Us;, ®, = P, (M = 1) (21)

The above continuity conditions can also be expressed in terms of complex potentials as

{fl(t)_mzﬁ ) = (1), (| =R, (22)

{fz(t)—mﬂs 1) — (), ] = 1. (23)

3. General solution

The main idea of the solution procedure is the following:

First, we satisfy all of the continuity conditions across the interface |¢| = R to obtain expressions of f;({)
and f,().

Second, we satisfy all of the continuity conditions across the interface |¢| = 1 to obtain expressions of
£2(0) and £3(0).

Third, by equating the two expressions of f,({) obtained from satisfying the continuity conditions across
|| = R and |¢] = 1, the unknown coefficients in the expressions can be uniquely determined.

Fourth, based on the obtained complex potentials, physical quantities such as stresses and electric
displacement can be derived.

Based on the superposition principle for a linear system, the original problem can be decomposed into
the following three cases which can be treated more easily: 1. Remote mechanical and electrical loadings, 2.
a singularity in the matrix and 3. one singularity in each of the two inclusions. The solutions for the above
three cases will be derived separately in the following analysis.
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3.1. Remote uniform mechanical and electrical loadings

First, the continuity conditions across inner circle |¢| = R should be satisfied.

Introducing the following forms of analytical continuation

f.(0) =f(R*/0) (> R), (24)

f2(0) =R(R?/0) (R <[] <R), (25)
then, the continuity of displacement and electric potential can be expressed as follows:

fi—f, =f, — 1), (26)

where superscript + denotes approaching |¢| = R from within the circle, superscript — denotes approaching
|{| = R from outside the circle.
Eq. (26) can be rearranged as follows:

f+6) = +£) =0. (27)

By the generalized Liouville’s theorem and the symmetric condition and also noting the singular behavior
of ,({), the following expression can be obtained:

K a*R’K

+00
Gi(0) =f1(0) +12() = Ao+ > (AL + R"ALT") +

n=1

The continuity of traction and normal component of electric displacement can be expressed as follows:

Uiy +1) =y(f; +1;). (29)
Substituting Eq. (28) into Eq. (29) yields
fi 46, =2( + ) '1,6, (). (30)

By applying the Plemelj formula and Cauchy integral formula, we can obtain

+00
2 +1L) 7', (AO + AL+ I’@g) Il <R
n=1 i

fl(g) = (31)

+00 _ _
2(T +T,) ', (ZRZ”AnC_" - gz’f;?) <[> R.

n=1

Substituting Eq. (31) into Eq. (28), f,({) in its definition region R < |{| < 1 can be expressed as follows:

+00 . B ~+00 P 2R2K K
f2(0) = Ag+ Y AL+ (T +T2) (I = Ty) (ZRz Al = Ca_ aR2> Tz 1/a’ (32)

n=1 n=1

Second, the continuity conditions across outer circle |¢| = 1 should be satisfied.
Introducing the following forms of analytical continuation

3O =1:(1/0 (<), (33)
(0 =031/0 (1< <1/R), (34)

then, the continuity of displacement and electric potential can be expressed as follows:

f; -1, =f; — 13, (35)
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where superscript 4+ denotes approaching |¢| = 1 from within the circle, superscript — denotes approaching
|f| = 1 from outside the circle. Eq. (35) can be rearranged as

(f2 + f3)+ — (fz + f3)7 =0. (36)

By the generalized Liouville’s theorem and the symmetric condition and also noting the singular behavior
of f,({), the following expression can be obtained:
K a’K

1 I—e (R < [{| < 1/R). (37)

Gy(0) =h(0) +13() =By + > _(BL"+B,{ ") +
n=1

The continuity of traction and normal component of electric displacement can be expressed as follows:

IL(fy +15) =T5(f; +17). (38)
Substituting Eq. (37) into Eq. (38) yields
i+, =2(0, + 3) TGy (0). (39)

By applying the Plemelj formula and Cauchy integral formula, we can obtain

+0o0 s
20, +15)7'T, (Bo + 3B, ——K) 1] < 1,
n=1 i
f3(0) = o (40)
2(r2+r3)—1r2(23 . Z-?/a) > 1.
n=1

Substituting Eq. (40) into Eq. (37), f2({) in its definition region R < |{| < 1 can be expressed as follows:

- —n -1 o n aZK K
=> B4+ (T +T3) (T3 —Ty) By + > _B,{ “ra) i (41)

n=1 n=1

The two expressions of f,({) in its definition region R < |{| < | obtained from satisfying the continuity
conditions across the two interfaces must be the same one, then equating Egs. (32) and (41) yields

- 2R2K
Ag+ > AL+ (T +To) (T —T) ZRZ"A -

n=1
-+00 o 4 +o00 azK
=Y B+ T2+ 15) ' (T5 =) B+ > B, - —a (42)
n=1 n=1
The above equation can be separated into the following two equations:
+00 B +00 azK
Ag+ Y AL =T+ T3) (T3 —Ty) By + > _B,l" - =) (43)
n=1 n=1
+00 2P
_ e on @ RK
ZBnC (T + 1)~ (F1F2)<;R A, C—W) (44)
When R < [{| < 1, the following power series expansion is convergent:
a’ s
= _Zai(nil)énv (45)

C_a n=0
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2p2 +00
a’R N

n=1

Substituting Egs. (45) and (46) into Eqs. (43) and (44), comparing the coefficients of the same power of {,
we can obtain

I +15; L-Ts | [A, | _ [ (I -T3)a VK B
[(Fz—rl)Rz" FerFJ{B,,}{ (T — I'))a" ' R*K (n=1,2,...,+00). (47)

From the above equation, we can get those unknown constants as follows
05,5 —(Fy = T3)a ™Y

{An}_[ I, +T; rz—rg]“ {K}
B,/ |([-T)R” TI,+T, (Fy = Ty)a" 'R 05,2 K/’

n=12 ..., +oc. (48)

Since Ay and By represent the equipotential field and the translation of a rigid body, they can be ignored.
The complex potentials which characterize mechanical and electrical fields have been obtained completely

as follows:
>, I{] <R,

f1(0) =2 +I)” <ZAC+

2 P2
f2(0) = ZAnC 4+ (0 +Ty) ZRZ"A o @R K . K
n=1 2;_1/(1
:ZB"C + (M +15) 1“;—1“2 <ZBHC > CiKl/a7 R< [t <1,
n=1

_ O +oo . K
f3(0) = 2(Iy +1y) F2<;Bné +C1/a>’ ¢ > 1.

The expressions of stress and electric displacement within the two inclusions and the matrix can be derived
expediently from the above complex potentials. The distribution of stress and electric displacement in the
right inclusion is

a’ —

n=1

O-Zy + iO—zx _ -1 ox (aC - 1)2('171 aZ
{Dy_HDY}_Zl"](FH—l"z) F2<Zn 1 A,,—az_lK s |C|<R (49)

The distribution of stress and electric displacement in the left inclusion is

n=1

0., + 105, B +oo al — 1% (n+1) &2
{Dj_s_li}:er(rz-l-r}) 1F2<Z—n( )_1 B"_az—lK ;¢ > 1. (50)

From the above two expressions, it is not difficult to observe that the stresses and electric displacement
within the two inclusions are no longer uniform due to the interactions of the inclusions.
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The distribution of stress and electric displacement in the matrix is

0.y + 10, -1 — o (@l — 1)2C_(n+l)— a’R’ (al - 1)2 174
=, +T r-r — nR™" A, K

n=1

400 2en—1 2
(al —1)¢ _a
+r2<§ n A -—K|, R<[f<1

— a*—1
P S SRS TR (N Cl Sl VS C Sl Vit
= +15) (I3 - 1) ;” 21 n+a2—1(C—a)2
+00 (aC _ 1)257(n+1) o a2
r - B, — K|, R 1. 51
! 2(:12—1: " a*—1 a?—1 << (51)
The stress and electric displacement along the boundary |f| = R are
. + +00 2 2
0, +io,, 1 a’t lat — 1]
. —r(T, + )7 'T r'A, — K , 52
{D;+1Dn} ([ +T2) 2(;” (at — 1) >R(a2—l) (52)

i - I 2 2
0z + 102, at lat — 1] »
. =T r"A, — K LI+ T r,-r
{D,+1D,,} 2(2" (at—1)2 )R(a2—1)+ »(Ty 4+ 1) (I 2)

n=1

~+00 2p2 2
ek a’R*t —\ |at —1]
X (E nR™t An+(t_aR2)2K> R@E— 1)’ (53)

n=1

The stress and electric displacement along the boundary |¢f| = 1 are

ox+ion " _ f "B g |“’_1|2+r(r +T) 7' (M =)
Dt+iDn - " " (at—])z 1—612 2 2 3 3 2

n=1

— , at -\ |at— 1)
x (Zlant +( K) — (54)

t—a)’
. - +00 2 2
Oz + 102, _ -1 D at |at — 1|
{Dt+iDn } =2I(I' 4+ I'y) Fz<;—nt Bn_(at—1)2K> [~ (55)

where in Eqs. (52)—(55), subscript ¢ stands for tangential component, whereas the subscript n stands for
normal component.

3.2. A singularity in the matrix

First, the continuity conditions across inner circle |¢| = R should be satisfied.
Introducing the analytical continuation expressed by Egs. (24) and (25), then the continuity of dis-
placement and electric potential can be expressed as follows:

(f+£)" = (f+£,) =0. (56)

By the generalized Liouville’s theorem and the symmetric condition and also noting the singular behavior
of £,({), the following expression can be obtained:



4448 X. Wang, Y.-P. Shen | International Journal of Solids and Structures 38 (2001) 44394461

Gi(0) =11(0) +12(0)

b, —F;‘le In (=06

+00
— A+ Y AL+ RALT
0+n:l( nC+ nC )+ 21_[ —1/(1

+f)2+r2_lf21 C R /Cz

o TR (R*< ¢ <1). (57)

The continuity of traction and normal component of electric displacement can be expressed as follows:
(] +1)) =T (f; +1;). (58)
Substituting Eq. (57) into Eq. (58) yields:

£+, =2(1 + 1) ' 16 (0). (59)
By applying the Plemelj formula and Cauchy integral formula, we can obtain
2N +1,)7'T, (AO LA “;ls”za), C| <R,
fl(C) = B ! B +r i g (60)
2(F1 + r2) r (;RznAnC + 2 = l - aléﬁz )7 |C| > R.
Substituting Eq. (60) into Eq. (57), f,({) in its definition region R < |{| < | can be expressed as
n r f21 4, C2 -1 RS mx v—n
£2(0) = M+;AC+ e VAURS DI UR D ;Rmc
b, + r;lle (- R2/T,
. 1
+ 2n C —aR? (61)

Second, the continuity conditions across outer circle [¢| = 1 should be satisfied.
Introducing the analytical continuation expressed by Egs. (33) and (34), then the continuity of dis-
placement and electric potential can be expressed as follows:

(fz + f})+ — (fz + f3)7 =0. (62)

By the generalized Liouville’s theorem and the symmetric condition and also noting the singular behavior
of f,({), the following expression can be obtained:

G, (0) = £2,(0) +13(0)

-T; le 5 )
=B " B, In
ot Z BT+ 2n —1/a
b2+I‘2 f21 71/(2
1 R 1/R).
PRI R[] < 1/R) (63)
The continuity of traction and normal component of electric displacement can be expressed as follows:

L(f; +1,) =Is(fy +13). (64)

Substituting Eq. (63) into Eq. (64) yields

i +f; =2(0, + 3) 'G5 (7). (65)
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By applying the Plemelj formula and Cauchy integral formula, we can obtain

2T, +T3) Fz(Bo+ZBnc + b g & 1/“)7 7 <1,
n=1

f3(0) = (66)
2l +T5) " (ZBnC +2 r f211 = IC/2a>’ &> 1.

1

Substituting Eq. (66) into Eq. (63), f,({) in its definition region, R < |{| < 1 can be expressed as

. b—r i (¢ _ &
ZB,,C 2 5 21nC_1/2a+(r2+r3) 1(F3F2)<B0+ZB,,C

n=1

+b2+F2’ fzilné—l/@). (67)

2n ({—a

The two expressions of f,({) in its definition region R < |{| < 1 obtained from satisfying the continuity
conditions across the two interfaces must be the same one, then equating Egs. (61) and (67) yields

+00 . b+r lfl C RZC
Ag+ Y AL+ (T +T5) (T = T) <ZR2”A5 L C—a1/322

n=1

+oo 400
= on 1 L b+ Iy f21 -1/%
= ;B,,C + (T +T5) T3 -Ty) (Bo + ;Bné + o { — (68)
The above equation can be separated into the following two equations:
+00 +00 I —1g : -
n -1 s b+ i (—1/0
A0+;Ang = ([ + ) (M —Ty) (Bo—i—;BnC e e gl (69)
Bl — (0 4+ 1) (T ) [ S R, by + 1yt {— R/ 70
Z " 1+ 2) ( = 2) ; L o C— aR? : ( )
When R < |{| < 1, the following power series expansion is convergent:
(-G Ja' -0
1 = " 1
"oa ; n & (71)
Y +00 AV 2 /7 \n
h’lC R /CZ _ (aR ) (R /£2) gfn. (72)

{—aR? n

n=1

Substituting Egs. (71) and (72) into Eqgs. (69) and (70), then comparing the coefficients of the same power of

{, we can obtain
rz + F3 rz — F3 A,, | A A "*4,2 I’2‘*’1‘ ',
_Jg (b 2}32 e i (=12, 400). (73)
B, (Fl 7r2)(a )" ”( [8)" B2 272[ 2

(T, — TR Ty +T

From the above equation, we can get
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—n

{ A, } B [ N+r; -] 02, (T3 —Iy) =
B, B (T, — F])RZ" I, +1 (I, — 1Y) (@RY)"—(R? /&))" 0,.,
by—T; i
2n _
X bt i (7 (n=1,2,...,400). (74)
2n

Since A and B, represent the equipotential field and the translation of a rigid body, they can be ignored.
The complex potentials which characterize mechanical and electrical fields have been obtained completely
as follows:

-I; £,i 4
f](é/) 2(F1+I‘2 <ZAC —+ o 2 In 1/2 >, |C|<R,

+00 L r-lf
fz(é/) — ZAnCn + b2 21;2 f21 In é’_ 1C/2 (rl + Iwz)fl(l—‘l _ rz)
n=1

+00 I —1g : 2%
—_ b2 + F f21 é/ —R CZ
RZnA n 2 1
X <Z T e

n=1

Sr'hi, (¢ )
_ZBnC +0 = = In _1/2a+(r2+r3) (3 —Ty)

b+r 'f,i —1/¢
<ZB,,§ 2 2! lng(:_i?), R<|{ <1,

I3 'f —
() = 2T+ T3)° (ZM s @), o> 1.

l/a

The expressions of stress and electric displacement within the two inclusions and the matrix can be
derived expediently from the above complex potentials.
The distribution of stress and electric displacement in the right inclusion is

. +00 _ 2en—1 _
{“zy*.l%}:zrl(r1+rz)‘1r2<zn(aé DESEYW i fMCZ La ) i <&

D, +1D, g a? —1 2n -1 (-4
(75)
The distribution of stress and electric displacement in the left inclusion is
oz + iO’ZX +00 (n+1)
7| ¥ (at — 1)’
D, +iD, p =2I3([, +13)7'T, (Z — n—_an
b -I; f21 aC 1 al
2 = 2 e C)’ 1] > 1. (76)

The distribution of stress and electric displacement in the matrix is
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0, +io, X (al - 1) b, — Ty 'hial, —1al -1 O
-T A, (0 +T
{Dy+li} 2<Zn @ -1 T e1i-4)" A+ 1)

n=1

+00 _1)\2p7—(nt1)
x (I — ]"2){ Z( _ n)u]eznx”

o a?—1
N b, + I 'f2i R2/T, — aR> (at —1)*
2n @—=1  ((-R/G)(~aR?)
+00 2 ¢—(n+1) I —lg
B B (al = 1)¢C = by—I,Hhial,—1al—1 1
r2<; L B S -y b sl IR UL Y

a?—1
n=1

3 <r3-r2>{§5nwm

+Bz+r;‘f2i1/§—a (al — 1)
2n a?—-1 (-1/L)(~a

)}, R<| <1 (77)

3.3. One singularity in each of the two inclusions

First, the continuity conditions across inner circle |¢{| = R should be satisfied.
Introducing the analytical continuation expressed by Egs. (24) and (25), then the continuity of dis-
placement and electric potential can be expressed as follows:

(f+£)" —(f+£f,) =0. (78)

By the generalized Liouville’s theorem and the symmetric condition and also noting the singular behavior
of f1({) and f,({), the following expression can be obtained:

Gi(0) =1£1(0) +£2(0)

& _ by — I; 'f5i by + ;51 . (- aR?
— n WA ey 3 2 '3 1 _1 ) 2 13 1
Ay + ;(AHC +RALT) == 2 In({ — 1/a) Tl
b, — I 'f)i b, + ' - b =T
+TIH(C—51)+TIH(C R /() I In({ —1/a)
b, + I, 'f,i
—b‘%;“ In({ —aR?), (RP<[¢<1). (79)

The continuity of traction and normal component of electric displacement can be expressed as follows:
Li(f +1)) =T (f, +17). (80)
Substituting Eq. (79) into Eq. (80) yields
f{+1; =2() + ) '16, (). (81)

By applying the Plemelj formula and Cauchy integral formula, we can obtain
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. e
[0 =20+ 1) {AO+ZAC 2 by — Iyl In( —1/a) + 25 n g
r;'f b, — I 'f,i b, + I '
-R/{) - Tll (C—l/a)}-ir]zinlllln(i—ﬁ)—lz—nl]l
x In({ = R*/C), | <R, (82a)

L
(D) = 2T, 4 To)" {ZRZ"A - b3+F i (= aR b T Bl 2))

s 2
LIRS DS (TR B T VN (L o b, + I7'f,i
—an In({ — aR )} o In({—-¢)) + —n
xIn(( = R*/C), [{| >R (82b)

Substituting Eq. (82b) into Eq. (79), f»({) in its definition region R < |{| < 1 can be expressed as

iw:RZnX Cfn _ l33 + F;1f31 lnC - aRz +B] — F;]fll

£,(0) =T + Fz)fl(rl - Fz){ 2 o 7 o In({ - ¢))
b, + I, 'f,i I;'fsi I;'fi
*124;1111(5 )}+Ao+ZAnC *T3 n({—1/a) - Tl

<~ 1/a) + 2T g (53)

Second, the continuity conditions across the outer circle |¢| = 1 should be satisfied.
Introducing the analytical continuation expressed by Eqs. (33) and (34), then the continuity of dis-
placement and electric potential can be expressed as follows:

(f,+ )" —(f, +1f3)" =0. (84)

By the generalized Liouville’s theorem and the symmetric condition and also noting the singular behavior
of f,({) and f3({), the following expression can be obtained:

Gy () =1£:(0) +13(0)

=B, + Z (B,{" + B, ") — b _;;Zlfli In® _Cl/a _b +2f121f1i In(¢ —a) + b - I;'hii _223%
cin(c - 1+ REE D ey BBy BT
xIn({—a) (R<|{|<1/R). (85)
The continuity of traction and normal component of electric displacement can be expressed as follows:
Dy(fy +1,) = T3(fy +15). (86)
Substituting Eq. (85) into Eq. (86) yields
] +1; =2(I +T3) 'TLGa(0). (87)

By applying the Plemelj formula and Cauchy integral formula, we can obtain
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400 ° “1f . P opelp
£5(0) = 2(Ts + F3)1rz{Bo Y WL R LRI H L S RIS

— 2n 2n
b; + I;'fi b; — 5 'f3i b; + 5 'fsi _
—E S (- a)} S -G+ 2 - 1G), <1,
(88a)
n f)l — r;lfll C — 1/(1 f)g —+ r;lfﬂ -
f3(0) =2 + 1) { ZBnC = In 7 + o In({ - 1/8)
b; — I;'fsi b; — I';'f5i bs + I';'f;i
o In({ l/a)} +T In(¢ - {3) ~ om
xIn(( = 1/G), ¢ > 1. (88b)
Substituting Eq. (88b) into Eq. (85), f»({) in its definition region R < |{| < 1 can be expressed as
+00 I —1g : z —1g -
_ b1 +I f]l b3 -T f31
f =+ ' —L){B B, (' ———2—1 - = 37 -
2(0) = (T +13) (I 2){ 0+ WZZI: nC o n({ —a)+ o n({ - )
63 + F;1f31 _ F fll — 1/61 63 — r;lfgl
- =52 } + ZB,,g 52— In T In({ —1/a)
b; — I';'f5i
o A (- G). (89)

The two expressions of f,({) in its definition region R < |{| < 1 obtained from satisfying continuity con-
ditions across the two interfaces must be the same one, then equating Egs. (83) and (89) yields

+00 B +00 b +b = F £

Ay +ZAnC" =T+ 1) 1(1“3 —F2){B0 +ZBn n _ (by +b;) +2n2 (fy +1£5)1 ln(C—a)}
n=1 n=1

b3 I;'fi

+2(, + F3) o

ln(c - CS)’ (90)

(by +bs) + ;' (F, +£3)i . {—aR?
ZBn( (F1 4+ Ta) YT = 1) {ZRZ"AnC (b + 3)+2n2 (£, + 3)llnC Ca }

bl_r f11 C—Cl
> - (91)

By expanding the above two equations in its definition region and by comparing the coefficients of the save
power of {, we can obtain

+2(0 +1)7'T

f)l + 63) + F;l(fl + f3)i a” _or, B% — r;lfﬂ g’ (92a)
2n n 21 n

(I, +T3)A, + (I = T3)B, = (I's = Iy) (

b, +bs) — ;' (f; + )i (aR?)" b, + T 'fii )
(rl+r2)Bn+(F2—F1)R2”A”:(F1—Fz)( 1+ by) 21!:2 (fi +1)i ( n) -1t an ! %

(92b)
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From the above equation, we can get

a b1 b )= (F) +2)i
A, I + 13 r-Ir;]" 05,2 (I3 =)~ Guthy) T, Eis)i ;ﬁ URLD)
B, [(N-T)R" TI'i+T, () — Ty) & 0.2 (bytby)+T ' (Fy +3)i
" 2n
o A
02><2 _2F3é37 b1+;1[ fii
: [21“ [ by Ty ' (n=1,2,...,+00). (93)
15 %2 5

The complex potentials which characterize mechanical and electrical fields have been obtained completely
as follows:

b, + i

'3 _
R N Y N KW L)

fi(0) =2 + 1) { ZA -

In({ = R/T), [ <R,

b, — [;'fii b, — I7'f,i b, + T 'fii
-2 Ui —1 <L U -¢)-—1-L1
o n(C /a)} + om H(C Cl) o

f:RZnK Cfn N lA)3 + F;1f31 IHC —aR? + f)] - r;lfll

£(0) = (N +T)7'(Ty Fz){ 3 o 7 S In(C-0)
bt +2r152_1f“1 (- aR? }+ZA¢ 2 f“ In( — 1/a) - 2 =Ll _2I;T£lf1iln(é—1/a)
R _2211“ In(t - &)
() {anc b g BB
by +2rn; hi, }+ZBC"’— ; i —Cl/a_f)g —2?1&1 In(C  1/a)
+f’3‘2r;1f3iln<c—c3), R<lg <1,
f(0) = 2(0 + Ty {ZBnc b ‘;;jlf“lng‘;/%'% ERLINEYS

In({ - 1/G), [¢> 1.

b; — I;'f3i b; — I3 'fai b; + I 'f3i
—TIH(C— l/a)} +T IH(C— C3) _T

Also, the constant terms Ay and By representing the equipotential field and the translation of a rigid
body have been ignored in the above expressions. It can be observed that the above complex potentials
indeed satisfy the singularity conditions (17)—(19). We hasten to add that the solution structure for the case
when the singularity lies in the inclusion is different from that when it lies in the matrix, so the two cases
must be discussed separately. The expressions of stress and electric displacement within the two inclusions
and the matrix can be similarly derived from the above complex potentials and will not be shown in this

paper.
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4. Examples

In this section, several special examples will be presented to demonstrate the versatility and the cor-
rectness of the obtained solutions. It is assumed here that the right circular inclusion possesses the same
electro-clastic moduli as its surrounding matrix, i.e. I', = I'; and three different kinds of loads will be
discussed separately.

4.1. A circular inclusion in piezoelectric matrix subject to remote loadings

It can be found from Eq. (48) that in thiscase B, =0 (n = 1,2, ..., +00). Utilizing the mapping function
(11), we obtain the field potentials in closed form as follows

- —1
fi(z) =Mz + (0, + 1) (I —1“2)11;, z € Dy, (94)
- —1
f,(z) = Iz + ([, + I3) ' (I _1“2)1];, z€ D, (95)
f3(z2) = 2(F, + I3) 'Dollz, z € D (96)

Here, our results coincide with those obtained by Pak (1992) and it can be observed that in this case the
stresses and electric displacements are uniform within the circular inhomogeneity.

4.2. A singularity in the matrix

It can be found from Eq. (74) that in thiscase B, =0 (n = 1,2, ..., 400). Utilizing the mapping function
(11), we obtain the field potentials in closed form as follows:

b, — ;' _ b, + i z—1/z
PO LSl 0 L M S SIS SRS S S el B L el Vi S (97)
2 2n z
b, — ;' _ b, + i z—1/z
PO LBk 0 L A S SIS SRS S SO el B L el Vi S (98)
2 2n z
1 by — T
f’;(Z) = 2(F2 +F3) 1F22T221 11'1(2—22)7 z EDg. (99)

Eqgs. (97)-(99) are identical to those obtained by Meguid and Deng (1998).

4.3. A singularity within the left inclusion

It can be found from Eq. (93) that in thiscase B, =0 (n = 1,2, - - -, +00). Utilizing the mapping function
(11), we can obtain the field potentials in closed form as follows:
_B3—F2_1f3i zZ—2z3

b; — I;'fsi
1
2 n

]nz+2(F2 +F3)_1F3 o 2

f1 (Z)

. zeD, (100)
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b; — ;' b T z—z

fz(z):%mzu(rﬁn) T, = 2n3 > In . 2 zeD, (101)
b; — I';'f3i _ b; + I';'f3i

f3(2) :3T3311n(z_z3) (D4 (T —l})%ln(z— 1/z:), z€Ds. (102)

Eqgs. (100)—(102) are identical to those obtained by Deng and Meguid (1999).

5. Numerical demonstration

As one example, consider now the case when the matrix is subjected to uniform remote electro-me-
chanical loadings.

The material properties of the matrix are

cas = 3.53 % 100 Nm’z, e;s = 10 Cm’z, e = 1.51 x 10— (321\17l m~2.

For simplicity, the material properties of the left and right circular inclusions are

e =1.00x10° Nm2, e5=20Cm2, ¢&;=151x10°%C*N'm2.

Assume the two inclusions approach each other very closely with the geometry parameters taken as
x> =1.01 m and x; =4.01 m.

The remote loading conditions are ¢2° = 2.5 x 107 Nm?, gy =5x 10" Nm2; E* = 0.5 x 10° Vm, and
EX =10° Vm.

In the calculation, Laurent’s series is truncated at » = 200 due to the fact that the two inclusions are
extremely close (In general situations, not more than 100 terms in Laurent’s series are needed to exactly
satisfy all of the prescribed boundary conditions). All of the calculated quantities have been divided by 107.
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Fig. 2. Distribution of stress and electric displacement along the x-axis.
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Fig. 2 shows the distributions of the stresses and electric displacement along the x-axis. From this figure, it
can be observed that ¢, and D, are continuous across the interface boundaries while o., and D, are dis-
continuous across the boundaries. We also note that the stress and electric displacement are no longer
uniform within the two inclusions. Fig. 3 shows the angular variations of stresses and electric displacement
along the interface formed between the left inclusion and the matrix, whereas Fig. 4 shows the angular
variations of stresses and electric displacement along the interface formed between the right inclusion and
the matrix. It can be observed from Figs. 3 and 4 that the normal components of stress and electric dis-
placement are continuous across the two interfaces, while their tangential components have a jump across
the two interfaces, which conforms to the prescribed boundary conditions. From these curves, we can also
find that significant stress amplifications will occur along these interfaces. Fig. 5 illustrates the case when
the right inclusion and the matrix have the same electro-elastic moduli. We can find that in this situation the
stress and electric displacement are uniform within the left inclusion, which confirms our solution from one
aspect. Fig. 6 shows the case when the right inclusion is far away from the left inclusion. In this case, the
stresses and electric displacement in both of the two inclusions are uniform, which also confirm our so-
lutions. To see more clearly the distribution of stresses in the full field, Figs. 7 and 8 present the contour
plots of g,/ o and o, / o2 when subjected to uniform loads o2 =0, o2 =5 X 10" Nm~2, E* =0,
EX = 10° Vm~'. It can be observed that 0., is symmetric with respect to the x- axis, whereas o, is anti-
symmetric with respect to the x-axis and that there exists serious stress amplification at the point where the
two inclusions are nearly in contact with each other, also we can see clearly from the two figures that how
the stress fields within each of the two inclusions are altered by the existence of another circular inclusion.

We have carried out a large quantity of calculations and find that the solution provided in this paper is
especially suited to treat the case when the two circular inclusions are extremely closely spaced provided
that the number of terms in Laurent’s series is sufficiently large.
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Fig. 3. Angular variations of stress and electric displacement along the interface formed between the left inclusion and the matrix (“+’
for inclusion, ‘+’ for matrix).
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Fig. 4. Angular variations of stress and electric displacement along the interface formed between the right inclusion and the matrix (“x’

for inclusion, ‘+° for matrix).
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Fig. 5. Distribution of stress and electric displacement along the x-axis for the case when the right inclusion and the matrix have the

same material property.
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Fig. 6. Distribution of stress and electric displacement along the x-axis for the case when the right inclusion are far away from the left

inclusion.

Fig. 7. Contour plots of g,/ o2y when subjected to uniform loads: 3

—0. ¢
=0, 03

=5x 10" Nm™2, E* =0, E® = 10° Vm™!
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Fig. 8. Contour plots of a../o3 when subjected to uniform loads 6% =0, 63 = 5 x 10" Nm ™2, EX =0, E* = 10° Vm ™',

6. Conclusion

An analytical solution in series form for the problem of double circular piezoelectric inclusions em-
bedded in an infinite piezoelectric matrix is derived by applying the complex variable method. The gen-
erality of the solution is shown in the following sense: (1) The size, location and electro-elastic properties of
the two circular inclusions are arbitrary, (2) The loadings (singularities) are arbitrary. From the obtained
result, it can be shown that the interaction effect cannot be ignored when the inclusions are closely spaced.
The obtained basic solution provided in this paper can be used as a Kernel function of a singular integral
equation to consider the interactions among the two circular inclusions and cracks or rigid line inclusions
(anticracks). We will present the result in a forthcoming paper.
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